The Maximum Likelihood Neural Network As A Statistical Classification Model by
نویسندگان
چکیده
SUMMARY Neural networks have received considerable attention in recent years. This development has been pursued primarily by non-statisticians. Consequently many statistical tools and concepts have not been utilized in this development and great claims for neural networks have sometimes been made without comparisons to standard statistical procedures. In this paper we utilize the input-output relationship associated with a simple feed-forward neural network as the basis for a non-linear multivariate classifier. A statistical model for the data is defined based on a logistic likelihood function. Neural network parameters are estimated using the method of maximum likelihood instead of the back-propagation technique often used in the neural network literature. An extension for the multinomial case is presented. These maximum likelihood based models can be compared using readily available techniques such as the likelihood ratio test and the Akaike criterion (1973). We provide empirical comparisons of this network approach with standard logistic regression for both the binomial and multinomial cases.
منابع مشابه
Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملQSAR studying of oxidation behavior of Benzoxazines as an important pharmaceutical property
In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted from their structural molecular descriptors by using quantitative structure-property relationship (QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives which were obtained by DC-polarography. Descriptors which were selected by stepwise multiple selection procedure ar...
متن کامل